博客
关于我
Pytorch_第三篇_Pytorch Autograd (自动求导机制)
阅读量:705 次
发布时间:2019-03-17

本文共 1949 字,大约阅读时间需要 6 分钟。

PyTorch Autograd (自动求导机制)

PyTorch 的 Autograd 库是训练神经网络时反向误差传播 (Backpropagation, BP) 算法的核心。在本文中,我们将通过 logistic 回归模型来理解 PyTorch 的自动求导机制。首先,我们将介绍与求导相关的 tensor 属性;其次,通过 logistic 回归模型来阐述前向传播和反向传播的过程。

Tensor Attributes Related to Derivation

在 PyTorch 中, tensor 对求导支持多种属性和操作。以下是一些关键属性和操作:

  • x.requires_grad:标记 tensor 是否需要在反向传播过程中求导。
  • with torch.no_grad(): 在模型评估时用于禁用求导,减少计算开销。
  • x.grad:存储损失函数对该 tensor 的偏导值,需在调用 backward() 后访问。
  • x.grad_fn:存储计算图中某些中间操作的函数,用于指导反向传播。
  • x.is_leaf:标记 tensor 是否为叶子张量。叶子张量通常是手动创建的参数,如神经网络中的权值矩阵。
  • x.detach():返回 tensor 的数据及 requires_grad 属性,返回的 tensor 与原 tensor 共享存储空间。建议使用此方法避免求导错误。
  • x.item():将 0维 张量(标量)转换为 Python 标量。
  • x.tolist():将张量转换为 Python 列表。

Build Logistic Regression Model

假设有以下损失函数:

[ z = w_1x_1 + w_2x_2 + b ]

[ y_p = \text{sigmoid}(z) ]

[ \text{Loss}(y_p, y_t) = -\frac{1}{n}\sum_{i=1}^n (y_t \log(y_p) + (1-y_t)\log(1-y_p)) ]

通过上述模型,我们可以构建一个简单的计算图:

  • 输入层通过权值参数 w1 和 w2 进行线性变换,输出层通过阈值参数 b 加上偏置。
  • 通过 sigmoid 函数将线性变换结果转换为概率输出。
  • 计算损失函数。
  • 在反向传播过程中,我们需要计算损失函数对权值参数 w1、w2 和阈值参数 b 的梯度,以便使用 SGD 等优化算法进行参数更新。

    PyTorch 实现

    以下是使用 PyTorch 实现 logistic 回归模型的代码示例:

    import torchimport numpy as npx_t, y_t = torch.tensor([[1, 1], [1, 0], [0, 1], [0, 0]], requires_grad=False, dtype=torch.float)y_t = torch.tensor([[0], [1], [0], [1]], requires_grad=False, dtype=torch.float)w = torch.randn([2, 1], requires_grad=True, dtype=torch.float)b = torch.zeros(1, requires_grad=True, dtype=torch.float)def logistic_model(x_t):    a = torch.matmul(x_t, w) + b    return torch.sigmoid(a)y_p = logistic_model(x_t)def get_loss(y_p, y_t):    return -torch.mean(y_t * torch.log(y_p) + (1 - y_t) * torch.log(1 - y_p))loss = get_loss(y_p, y_t)loss.backward()w.grad.zero_()b.grad.zero_()w.data -= 1e-2 * w.grad.datab.data -= 1e-2 * b.grad.dataprint(f"epoch: {e}, loss: {loss.item()}")print(w)print(b)

    代码解释:

  • 定义输入数据 tensor x_t 和目标输出 tensor y_t。
  • 初始化权值参数 w 和阈值参数 b。
  • 定义 logistic 回归模型函数。
  • 前向传播计算预测值 y_p。
  • 定义损失函数。
  • 反向传播计算梯度。
  • 更新权值和阈值参数。
  • 打印损失值和参数状态。
  • 运行代码后,我们可以观察到损失值随着迭代逐步下降,模型性能逐步提升。

    转载地址:http://yqvez.baihongyu.com/

    你可能感兴趣的文章
    Node.js 的事件循环(Event Loop)详解
    查看>>
    node.js 简易聊天室
    查看>>
    Node.js 线程你理解的可能是错的
    查看>>
    Node.js 调用微信公众号 API 添加自定义菜单报错的解决方法
    查看>>
    node.js 配置首页打开页面
    查看>>
    node.js+react写的一个登录注册 demo测试
    查看>>
    Node.js中环境变量process.env详解
    查看>>
    Node.js之async_hooks
    查看>>
    Node.js升级工具n
    查看>>
    Node.js卸载超详细步骤(附图文讲解)
    查看>>
    Node.js基于Express框架搭建一个简单的注册登录Web功能
    查看>>
    Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
    查看>>
    Node.js安装及环境配置之Windows篇
    查看>>
    Node.js安装和入门 - 2行代码让你能够启动一个Server
    查看>>
    node.js安装方法
    查看>>
    Node.js官网无法正常访问时安装NodeJS的方法
    查看>>
    Node.js的循环与异步问题
    查看>>
    Node.js高级编程:用Javascript构建可伸缩应用(1)1.1 介绍和安装-安装Node
    查看>>
    nodejs + socket.io 同时使用http 和 https
    查看>>
    NodeJS @kubernetes/client-node连接到kubernetes集群的方法
    查看>>